Completely Invariant Sets of Normality for Rational Semigroups

نویسنده

  • RICH STANKEWITZ
چکیده

Let G be a semigroup of rational functions of degree at least two where the semigroup operation is composition of functions. We prove that the largest open subset of the Riemann sphere on which the semigroup G is normal and is completely invariant under each element of G, can have only 0, 1, 2, or infinitely many components.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Counterexamples in Dynamics of Rational Semigroups

We give an example of two rational functions with non-equal Julia sets that generate a rational semigroup whose completely invariant Julia set is a closed line segment. We also give an example of polynomials with unequal Julia sets that generate a non nearly Abelian polynomial semigroup with the property that the Julia set of one generator is equal to the Julia set of the semigroup. These examp...

متن کامل

Weak*-closed invariant subspaces and ideals of semigroup algebras on foundation semigroups

Let S be a locally compact foundation semigroup with identity and                          be its semigroup algebra. Let X be a weak*-closed left translation invariant subspace of    In this paper, we prove that  X  is invariantly  complemented in   if and  only if  the left ideal  of    has a bounded approximate identity. We also prove that a foundation semigroup with identity S is left amenab...

متن کامل

TOPOLOGICALLY STATIONARY LOCALLY COMPACT SEMIGROUP AND AMENABILITY

In this paper, we investigate the concept of topological stationary for locally compact semigroups. In [4], T. Mitchell proved that a semigroup S is right stationary if and only if m(S) has a left Invariant mean. In this case, the set of values ?(f) where ? runs over all left invariant means on m(S) coincides with the set of constants in the weak* closed convex hull of right translates of f. Th...

متن کامل

A CHARACTERIZATION OF EXTREMELY AMENABLE SEMIGROUPS

Let S be a discrete semigroup, m (S) the space of all bounded real functions on S with the usualsupremum norm. Let Acm (S) be a uniformly closed left invariant subalgebra of m (S) with 1 c A. We say that A is extremely left amenable if there isamultiplicative left invariant meanon A. Let P = {h ?A: h =|g-1,g | forsome g ?A, s ?S}. It isshown that . A is extremely left amenable if and only ...

متن کامل

GENERALIZED POSITIVE DEFINITE FUNCTIONS AND COMPLETELY MONOTONE FUNCTIONS ON FOUNDATION SEMIGROUPS

A general notion of completely monotone functionals on an ordered Banach algebra B into a proper H*-algebra A with an integral representation for such functionals is given. As an application of this result we have obtained a characterization for the generalized completely continuous monotone functions on weighted foundation semigroups. A generalized version of Bochner’s theorem on foundation se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008